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ABSTRACT 

We present the details of a method for ontology-based waveform 
reconfigurability. In this method cognitive radios share the same 
base SDR ontology, which allows the radios to understand the 
concepts in a uniform way thus enabling transfer of more complex 
concepts from one node to another. In the process of 
reconfiguration, nodes can receive descriptions of waveforms 
expressed in Web Ontology Language (OWL) and Rules and then 
automatically configure their processing according to the 
specification. Such specifications would contain both structural 
descriptions of software components and finite state machines 
(FSM) necessary to compose the waveform from simpler software 
modules. The waveform configuration process encompasses 
generating state machines, building a model of the waveform by 
generating OWL individuals and relationships between them using 
the inference engine and the specified rules. The constructed model 
is then used to instantiate state machines and other software 
components and to connect them in the prescribed way. The result 
of the overall process is such that a cognitive radio is able to learn 
and construct a waveform it did not know before. 

A proof-of-concept system has been built confirming the 
feasibility of the proposed method. In the process of this system’s 
evaluation three different waveforms (BPSK31, QPSK31 and 
RTTY) have been described in OWL and Rules, the descriptions 
were successfully transferred from one node to another and then 
used by the receiving node to construct fully functional software 
modules implementing the waveforms. 

1. INTRODUCTION 
Most of the SDR architectures offer a set of adjustable 

and observable parameters of a waveform (also known as 
knobs and meters). These parameters can be used to 
implement the Set and Get operations, which allow making 
changes in the waveform parameters to improve the 
communications. The Set and Get approach to 
reconfigurability has been investigated by Wang et al. [1,2] 
in their Ontology-Based Radio (OBR) architecture. It was 
further refined by Moskal in his Cognitive Radio 
Framework (CRF) [3].  

In the previous work ([4,5]), an interoperability 
scenario was proposed in which not only could Cognitive 
Radios (CRs) change the parameters of the waveform (i.e. 
perform Set/Get operations) but could also negotiate their 
Reconfiguration  i.e. the use of a different waveform. In the 
current scenario when a CR receives a request for a specific 
software component it does not know, it can query the 
sender for a description of that component as a composition 
of simpler components. If any of the simpler components 
are also not known to the node, the querying can iteratively 
continue until at some level of decomposition the receiving 
node knows all the components. The method assumes the 
existence of a base SDR ontology shared by all CR nodes. It 
also assumes that all components not in the base ontology 

can be decomposed into simpler ones and that the 
decomposition process can be repeated at each level, until 
the components are represented by components from the 
base ontology. These two fundamental assumptions 
guarantee that two CR nodes will understand each other. 

The method for waveform reconfiguration presented in 
this paper is based on the interoperability scenario 
introduced in [4,5] and relies on the idea that the knowledge 
can be transferred from one CR to another and used to 
construct software components the CR node did not 
previously know. Just like in [4,5], the CRs share the base 
SDR ontology and can transfer descriptions of software 
components as compositions of simpler components 
expressed in Web Ontology Language (OWL) and rules.  
The scenario in [4,5] did not, however, provide a way to 
specify a behavior. The waveform reconfigurability method 
described here includes the ability to transfer descriptions of 
behaviors in the form of finite state machine (FSMs) 
models. Such descriptions – also expressed in OWL and 
rules – are used by the receiving node to generate a 
component that can be added to other components to 
provide the behavior for the composition. 

2. OVERVIEW OF THE RECONFIGURATION 
METHOD 

The waveform reconfigurability method depends on the 
following four elements: an SDR ontology representing 
components and their properties, a formal language in which 
waveform descriptions are expressed, an inference engine 
that provides formal reasoning capability and the application 
of FSM models for automatic generation of behaviors. 
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Figure 1.  Ontology-Based reconfigurable Cognitive Radios. 

The general system architecture of a reconfigurable CR is 
shown in Figure 1. The SDR part of the radio’s software 
provides the communications services to the user. The bulk 
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of data sent across the communications channel consists of 
data messages from higher layers of protocol (data link). In 
addition to that, CRs exchange signaling messages (control 
link). 
The process of reconfiguration involves the following steps: 
1. A CR node sends a Reconfigure request to another node 
2. If the other node knows the requested waveform it 

executes the request and switches to that waveform. If it 
doesn’t know the waveform it responds with a request 
for its description. 

3. A node that initiated the request for reconfiguration 
sends the description of the waveform, which is 
represented in OWL/Rules and may contain either a 
description of the component structure or a 
specification of the state machine. 

4. The receiving node verifies whether it knows all the 
components in the description. If not, it sends a request 
for description for all components it doesn’t know. This 
process is repeated until all unknown components are 
decomposed to simpler components the node knows. 

5. A model of the composite component is built out of 
OWL individuals. 

6. Based on the model, appropriate software components 
are instantiated from the local component library. State 
machines are generated from their descriptions. 

7. The waveform component is assembled by connecting 
the components as described in the OWL model. 

8. The newly constructed waveform is put into service.  

3. PREREQUISITES 
Some conditions have to be satisfied in order for the 
waveform reconfiguration method to work: 
• CRs have to be able to communicate with each other.  
• CRs have to share the same base SDR ontology. All 

other concepts in their SDR ontologies have to be 
decomposable into the concepts in the base ontology. 

• CRs have to be able to send and respond to queries 
about any arbitrary element not in the base ontology 

• CRs have to be able to incorporate the new facts they 
learned from other nodes into their local knowledge 
bases 

• CRs have to be able to reason about the facts in their 
knowledge base, the facts they learned through queries 
and their internal status. They have to be able to use 
these facts to reconfigure themselves as necessary 

4. ONTOLOGY AND CHOICE OF THE 
LANGUAGE. 

The base SDR ontology is a standardized set of SDR-related 
concepts and their relationships. At the moment of this 
writing there is a Cognitive Radio Ontology (CRO) 
developed by the Wireless Innovation Forum [6], which has 
been selected as a starting point for the proof-of-concept 
system developed in this research.  
The base ontology is the nucleus of all instances of SDR 
ontology. A particular instance in addition to base ontology 

may contain some additional local or vendor specific 
concepts – all of them have to be decomposable to concepts 
from the base ontology to ensure interoperability. 
SDR ontology together with the node specific knowledge 
(e.g. node’s configuration, waveform parameters, 
communication channel’s QoS parameters etc.) constitute 
that node’s knowledge base. 

Node specific knowledge (e,g, parameters , configuration)

S DR  ontology.

May include:
* vendor extens ions
* local concepts

Base S DR  ontology

 
Figure 2.  Cognitive Radio's knowledge base. 

 Although many languages have been developed to 
represent ontologies, in recent years the family languages 
based on RDF and RDFS gained prominence due to its 
involvement with the Semantic Web applications. Web 
Ontology Language (OWL) is the latest member of the 
family and it has been adopted as the official ontology 
language for the Semantic Web [7].  We selected OWL for 
the ontology development primarily due to the availability 
of development tools and inference engines supporting it.  
 As it was discussed in [4,5], OWL alone is not 
expressive enough to describe relationships in composite 
components and state machines. It has to be augmented with 
a rule language.  Our choice is the rule language of 
BaseVISor – a forward-chaining inference engine developed 
by VIStology, Inc [8]. BaseVISor is based on the Rete 
network optimized for the processing of RDF triples, and it 
incorporates axioms and consistency checks for R-
entailment, which supports all of the RDF/RDFS and a part 
of OWL-DL semantics. 

5. COMPONENTS 
Waveform reconfigurability has been developed around the 
idea of building complex software components out of 
simpler ones. The selection of particular software 
component architecture is not critical provided that all 
elements required by the proposed method can be 
implemented in it. In the proof-of-concept built during our 
investigation we implemented a lightweight framework 
based on the well known Observer design pattern [9], but 
other frameworks (e.g. CORBA) could have been used as 
well. 
 In the ontology all components are descendants of the 
class Component. The class Component has three 
subclasses: BasicComponent, CompositeComponent and 
StateMachineComponent, representing components from the 
base ontology, components not in the base ontology that are 
not state machines and state machine components 
respectively. 

It should be emphasized that although the concept of 
Software Defined Radio has been developed around the idea 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

55



of replacing majority of the radio’s hardware with the 
software routines, nothing in the waveform reconfiguration 
method restricts the components only to ones implemented 
in software. Specific method’s implementations may allow 
mixed hardware/firmware and software configurations and 
it is the responsibility of those implementations’ middleware 
to provide means for instantiation and composition with 
mixed types of components. 
 Components interact with other components through 
ports and signals and can be driven by an external clock (or 
clocks) (Figure 3). 
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Figure 3.  External connections of a Component. 

Ports are interfaces through which data flows from one 
component to another. A port is characterized by two 
features – its direction and the data type it carries. Two ports 
are connected if they are related through the isConnectedTo 
relationship. An output port can drive more then one input 
ports. Any restrictions on how many input ports can be 
driven by a single output have to be imposed by local rules, 
the reconfigurability method itself does not set any limits. 
 Signals are binary messages sent from one component 
to another to notify about asynchronous events. Signals are 
fundamentally different from ports. Ports handle major 
flows of data so the throughput is the primary consideration. 
Signals on the other hand have to be able to handle large 
number of receivers. For example a reset signal in a very 
complex component might need to be received by all 
subcomponents (potentially a large number). This 
characteristic of signals might have significant impact on 
how they are practically implemented (particularly in 
hardware or firmware). 
 An external clock is a source of periodical events that 
are used to pace the flow of data through synchronous 
components. Components may require more than one 
external clock (not common) or may not require any clock 
signals at all – in this case the inputs are processed when 
they are asserted on the input ports. 
 Two sets of parameters may be associated with a 
component: instantiation parameters and run-time 
parameters. 

The instantiation parameters are used during the 
construction of an instance of the component. In case of 

components implemented in an object oriented language the 
instantiation parameters might simply be passed to the 
constructor routine as input parameters.  

Certain components might also have observable and/or 
adjustable run-time parameters (knobs and meters), which 
can be read and/or adjusted through Get and Set operations. 
A run-time parameter can be adjustable or can be read-only. 
Each of these parameters has a tag (a name) that is used to 
identify it during Get/Set operations 

6. COMPONENT INSTANTIATION 
Components can be implemented not only in software 

but also in firmware or hardware. A system can support 
more than one kind of component instantiation - for 
example it can provide a number of hardware resources 
implementing the functionality and additionally a software 
version of the same component in case the number of 
provided hardware resources is not sufficient.  

A descendant of CompositeComponent type may be 
instantiated either as a single discreet component (if 
available) or as a composition of simpler components. 
Similarly a descendant of StateMachineComponent type 
may be instantiated as a discreet component but if such a 
component is not available the associated description of the 
state machine is used to generate an executable component 
instance. 

The different types of instantiation are managed by a 
set of classes derived from the class Instantiation. In the 
proof-of-concept system, three instantiation classes have 
been defined in the ontology: 
• JavaClassInstance – for instantiations from Java 

classes. An individual of this class contains the name of 
the JAR file and the name of the java class that 
implements the component. 

• ComponentComposition – for instantiations that create 
instances of components as composition of simpler 
components.  

• StateMachineCodeGen – for state machine components 
which are created through on-the-fly generation of 
executable state machines form their ontological 
descriptions. 

The instantiation knowledge is node specific; it is not a part 
of the standardized ontology. The selection of an 
appropriate instantiation class for a particular component is 
made by the inference engine. A set of rules governing the 
selection is specific to the CR node and is defined in its 
local knowledge base. The reasoner associates a specific 
instantiation class with each component class based on the 
rules and data available in the knowledge base. Later on, 
when an OWL individual representing an instance of a 
component is asserted to be rdf:type of that component 
class, the rules assert that this individual is also rdf:type of 
the instantiation class associated with that component type 
and that in turn fires another rule that is specific for that 
component type and instantiation type, which asserts for this 
individual the facts required for the creation of the instance.  
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7. STATE MACHINES 
State machines are frequently used in the definition and 
implementation of communication protocols. Traditionally 
state machines are hardcoded and are the integral part of the 
overall protocol implementation thus they cannot easily be 
changed or extended if new functionality is to be added. 
Reconfigurable systems that are to be able to learn new, 
unfamiliar protocols have to be able to support the creation 
and instantiation of state machines from their descriptions. 

 
Figure 4.  WIF’s prototype of STD ontology [6]. 

 Wireless Innovation Forum (WINNF) proposed that 
state transition diagrams (STDs) be used to describe finite 
state machine [6]. We used their prototype of STD ontology 
as a starting point for defining the state machine description 
ontology. Certain concepts in the ontology we developed 
have been inspired by similar constructs in the UML 
StateMachine package [10], but it should be understood that 
this ontology is not a mapping of the UML standard. 
 State machine components are externally similar to any 
other components. They communicate with other 
components through ports and signals and can be driven by 
an external clock.  

In order to better illustrate the state machine description 
ontology, consider the following example of a simple state 
transition diagram of a decimator by factor 4 (Figure 5). 

C OUNT_2

entry/S etOutput(out_port, in_port)
exit/count=0
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Figure 5.  An state transition diagram of a decimator by 4. 

The external view of the decimator is shown in Figure 6. 
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Figure 6.  External inputs and output of the decimator 
component. 

The decimator component is activated when it receives 
START signal. The reception of STOP deactivates it by 
making it to transition back to the IDLE state. When active, 
the decimator stays in the loop between the SEND and the 
COUNT_2 state. It sends to the output a sample read from 
the input port every time it enters state SEND, which 
happens every fourth clock event (CLK). 

The following entities are involved in the definition of a 
state machine: 
• States 
• Transitions between states 
• Clocks 
• Input and output ports  
• Incoming and outgoing signals 
• Definitions of events, which can be generated on: 

o a reception of a signal 
o a change of value on an input port 
o a reception of a clock signal 

• Properties that store auxiliary data necessary for the 
state machine to work. They are equivalent to local 
variables in programming languages. 

• Parameters which are equivalent run-time parameters 
of regular components and which support Get and Set 
operations. 

States are fundamental elements of the state machine 
and are represented by individuals of type fsm.State. A state 
may define OnEnter and OnExit action sequences which are 
executed when the state machine transitions into and out of 
the state respectively. A definition of the state also 
references the individuals representing the transitions that 
originate in that state. 
 
<obr:fsm.hasState variable="_Ind.STARTED"> 
    <rdf:type resource="owl:NamedIndividual"/> 
    <rdf:type resource="obr:fsm.State"/> 
    <obr:hasName datatype="xsd:string">STARTED 
    </obr:hasName> 
    <obr:fsm.hasTransition variable= 
      "_Ind.STARTED.Transition.0"> 
        <rdf:type resource="owl:NamedIndividual"/> 
        <rdf:type resource="obr:fsm.Transition"/> 
        <obr:fsm.triggeredBy variable="_Ind.Event.CLK"/> 
        <obr:fsm.hasTarget variable="_Ind.SEND"/> 
    </obr:fsm.hasTransition> 
    <obr:fsm.hasTransition  
      variable="_Ind.STARTED.Transition.1"> 
        <rdf:type resource="owl:NamedIndividual"/> 
        <rdf:type resource="obr:fsm.Transition"/> 
        <obr:fsm.triggeredBy variable="_Ind.Event.STOP"/> 
        <obr:fsm.hasTarget variable="_Ind.IDLE"/> 
    </obr:fsm.hasTransition> 
</obr:fsm.hasState> 

Figure 7.  Definition of the state STARTED in the example 
decimator state machine. 

Transitions are represented by individuals of the class 
fsm.Transition. A description of transition includes the 
target state and the event that triggers it. A transition may be 
guarded by a constraint (fsm.Constraint), which is an 
expression that evaluates to a logical true/false value. In 
addition to a guard the transition may also define a sequence 
of actions to be taken when the transition is executed. The 
transition actions are executed after the OnExit action 
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sequence of the originating state and before the OnEnter 
sequence of the target state.  

An expression (fsm.Expression) is an arbitrary 
statement that evaluates to a single value. In addition to their 
use as guards expressions are used as parameters to actions 
and API functions. The other types of expressions include 
API function calls, arithmetical operations, bit operations, 
values read from input ports and constant values.   
 Events trigger transitions between states. Three 
subclasses of fsm.Event correspond to three sources of 
events – clocks, signals and changes of input port values. 
 An action (fsm.Action) represents an executable 
statement. A collection of actions executed together is an 
activity. The simplest form of an activity is an action 
sequence which simply is an ordered list of individual 
actions. The type of actions supported in the state machine 
definitions include emitting a signal, setting output port to a 
value of an expression, setting a property (local variable) to 
a value of an expression. In addition to these there are two 
actions used for flow control (IF and WHILE statements) 
and there’s also an action returning a value that is used in 
the definition of the Get operation handler for a parameter. 
 Properties are similar to local variables in the 
programming languages and may be used as data buffers, 
counters, flags etc.  
 Parameters may be used to access and possibly adjust 
the internal data values in the state machine. The definition 
of the parameter includes an action sequence for Get 
operation. It might also include an action sequence for Set 
operation if the parameter can be adjusted. If the Set action 
sequence is defined, the parameter definition may also 
include a validation constraint.  

8. RULES IN COMPONENT DESCRIPTIONS 
A complete description of a component consists of two 
parts: 
• An external description that lists all the ports, signals, 

clock inputs and instantiation parameters. This 
description contains enough information to be able to 
instantiate the component and connect to the others but 
it does not say how such component can be composed. 
For BasicComponents (i.e. components in the base 
ontology that are not decomposable any further) this is 
the only description that is required. 

• An internal description that augments the external 
description with the details how to build such 
component. The internal description is a part of the 
component’s instantiation definition – and it contains 
either the description of the component composition 
(for components derived from CompositeComponent) 
or the description of the state machine (in case of 
descendants of StateMachineComponent). 

An internal description of a CompositeComponent 
establishes relationships among OWL individuals 
representing different types of objects – components, ports, 
signals etc. involved in the composition. The easiest way to 

reference these individuals would be to use their URIs 
(Uniform Resource Identifiers). Unfortunately, when the 
component description is created, the concrete URIs of the 
individuals are not known. Indeed, they cannot be known, 
otherwise no OWL model could contain more than one 
composition of particular type.  Still for the purpose of the 
composite component description one needs to be able to 
reference a particular individual without knowing its URI. 

Consider a composite component consisting of a 
cascade of two multiply-accumulate (MAC) components as 
shown in Figure 8. If the MAC component is not available 
in the CR, the CR can request and receive its description as 
a composition of an adder and a multiplier. Since in OWL 
all unique individuals have to have different URIs, the URI 
of the multiplier in the composition substituting for MAC1 
has to be different from the URI of the multiplier in the 
composition MAC2. Similarly, the URIs of the adders and 
the ports all have to be different. That clearly creates a 
problem when one tries to describe connections between the 
ports of the components within a composition. 

x + x +
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MAC 2.m1

MAC 2.m2 MAC 2.a

MAC 2.out
MAC 1.out

MAC 1.aMAC 1.m2

MAC 1.m1

MAC 1.m2 MAC 1.a MAC 2.m2 MAC 2.a

MAC 1.m1 MAC 2.out‘in1’

‘in2’

‘out’

‘in1’

‘in2’ ‘in2’‘in2’

‘in1’ ‘in1’

‘out’ ‘out’‘out’

‘MUL ’ ‘ADD’ ‘ADD’‘MUL ’

 
Figure 8.  Individuals in component compositions. 

We dealt with this problem by associating tags (labels) 
with all individuals in the description. The tags have to be 
unique at a given level of scope – e.g. all subcomponents 
have to have unique labels, all ports of the specific 
component have to be unique, etc. The labels are used to 
differentiate between individuals. Describing relationships 
in this approach however is no longer as simple as asserting 
a property between two individuals with known URIs. The 
descriptions of the relationships must necessarily be written 
as rules in which the labels are used to select the appropriate 
individuals and only then the relationship is asserted. 
Pseudo code of a rule describing a connection between the 
output of the multiplier and an input of the adder in MAC 
might look like the following: 

If the specified individual is of type MAC and if: 
• it has a subcomponent with a tag ‘MUL’ and 
• this subcomponent has an output port with a tag ‘o’ 

(assign the port’s resource to the rule variable 
‘_outPort’) 

• also if it has a subcomponent with a tag ‘ADD’ and 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

58



• this subcomponent has an input port with a tag ‘a1’ 
(assign the port’s resource to ‘_inPort’) 

then assert: 
• ‘_outPort’ drives ‘_inPort’ 

Similarly composed rules are used to describe other 
relationships in the component (e.g. signal connections, 
clock connections etc.). 

9. COMPOSITE COMPONENTS 
In order to fully define a composite component more data is 
required in addition to subcomponents and connections. 
 Consider the PSK31CharEncoder component used in 
the experiments in the proof-of-concept system (Figure 9). 

The external ports and signals of PSK31CharEncoder 
are defined in its external description (see section 8). The 
internal description contains the definitions of 
subcomponents, connections between them and the 
connections between external ports and signals of the ports 
and signals of subcomponents. The tags of the external ports 
and signals can be different than the tags of ports/signals 
they are internally connected to.  
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Figure 9.  The internal structure of PSK31CharEncoder. 

Two additional elements of the composite component 
description are not shown in Figure 9. One of them is the 
mapping of the external clock inputs of the composite 
component to clock inputs of the internal components. In 
this particular example the mapping is trivial as all internal 
components have only one clock input each and they all 
map into the singular clock input of the composite 
component. 

The second type of information not shown in the above 
diagram is the mapping of run-time parameters of the 
composite component into run-time parameters of internal 
components. In the proof-of-concept system we use simple 
pass-through type of mapping but in a real system that 
might not be sufficient. A solution similar to the one used 
for state machine run-time parameters might also be 
implemented for composite components. 

10. COMPONENT DESCRIPTION TRANSFER 
The process of reconfiguration starts when one of the CRs 
sends a request to another node to use a particular waveform 

(i.e. to instantiate and put online an instance of the specific 
software component implementing such waveform). If the 
receiving node knows that component then if other 
conditions are met the node can create the instance of the 
component and start using it. If the node is unfamiliar with 
the requested component it sends a query to the other node 
requesting relevant information about the component. 
 What exactly triggers the query is the assertion that an 
individual is of the specific rdf:type that is not present in the 
local knowledge base or that an individual is of type that is 
defined in the knowledge base but it does not have any 
instantiation class associated with it. Both situations are 
caught automatically in the BaseVISor rules and special 
procedural attachments designed to handle them are called.  
 After the descriptions of the component are transferred 
from the other node, the new facts are asserted in the 
knowledge database and the new rules are added to the local 
rule set. Then the inference engine is called again and this 
time around when it gets to the point where it processes the 
original assertion that triggered the component query, the 
knowledge base does have both the external and internal 
description of the component. When the individual is 
asserted to be of that specific type, the description rules kick 
in and automatically generate OWL individuals for all 
internal and external elements of the composite component. 
The presence of these individuals triggers in turn all other 
rules that define connections and other relationships among 
them effectively defining the whole composite component. 
 The process of building a state machine from its 
ontological description is very similar. The OWL model of 
the state machine is also built automatically through 
asserted facts and rules. The waveform reconfiguration 
method does not impose any specific way for the translation 
of the OWL model of the state machine into a component. 
In the proof-of-concept system we implemented a two-stage 
process for that. In the first stage the OWL constructs are 
translated into related Java constructs buffered in memory. 
In the second stage the buffered Java source code is 
compiled in memory into a binary class that is used to create 
an instance of the state machine component. 
 The process of constructing an OWL model of a 
composite component or a state machine is completely 
automatic. It utilizes the power of formal reasoning in the 
forward-chaining inference engine. As long as the 
description rules and facts are correct, the resulting model is 
correct too. Since the actual working instance of the 
composite component or state machine is a simple one-to-
one mapping of OWL individuals and relationships into 
components and connections (or java constructs in case of 
the state machine descriptions), the opportunities to make 
any errors due to ambiguities in interpretation are virtually 
eliminated and barring any errors in the mapping process 
itself, the building of the component from its description is 
provably correct. 
 Once the description of a component is transferred and 
integrated in the local knowledge base, it is automatically 
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applied to all other instances of that component type. The 
CR effectively learned the facts about the previously 
unknown component and is able to apply the acquired 
knowledge as needed. 

11. PROOF-OF-CONCEPT SYSTEM 
During our investigations we built a proof-of-concept 
system. The system has been implemented in Java and 
consists of two processes communicating with each other 
over the network. One of the processes functions as a master 
node that initiates the reconfiguration request and responds 
to queries for component descriptions. The other one acts as 
a slave node and it receives reconfiguration requests, sends 
component queries to the master as needed and then 
integrates in the local knowledge base the received 
component description. The slave node implements the 
middleware responsible for generating state machines and 
assembling composite components from their ontological 
descriptions.   

Both nodes use BaseVISor as their inference engines. 
The integration of BaseVISor with the rest of the cognitive 
agent is done through BaseVISor’s java API and through 
procedural attachments. The java API is used primarily to 
interact with the fact database i.e. to assert facts and to make 
queries. The API is also called when the inference process 
needs to be (re)triggered. Procedural attachments are used to 
define new constructs in the BaseVISor rule language and in 
the experimental system they are used for two purposes – to 
generate new resources when the rules are building an OWL 
model (of a composite component or a state machine) and to 
initiate the component query to the master node when the 
rule detects that an unknown type of an individual has been 
asserted. 

We selected transmit sides of three digital waveforms 
very popular in the amateur radio service as the subjects of 
our experiments. These are BPSK31, QPSK31 and RTTY. 
The reason for this selection is that all of them are of non-
trivial complexity but at the same time they don’t require 
great computational resources and their complexity is not so 
big as to impede the ability to diagnose problems that were 
bound to appear in the process of building the experimental 
system. All these waveforms are narrowband so they can be 
generated and monitored by a computer with a soundcard. 

For the purpose of testing the selected waveforms a test 
harness has been built in the slave process (Figure 10).  
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Figure 10.  Waveform test harness. 

The test harness consists of a simple GUI panel that allows 
to generate the events TxStart and TxStop that start and stop 
the waveform under test (TXChannel). A text input panel in 
the GUI allows entering of textual messages that are passed 
onto the waveform as the payload data. The waveform 
generates ClkEnable and ClkDisable signals that control the 
software clock. The output of the waveform is connected to 
the input of the AudioSink component that drives the 
computer’s soundcard. The audio output from the soundcard 
is monitored by a freeware application fldigi [11] that is able 
to receive and decode all three waveforms. 
We implemented all waveforms with the same set of 
external connections as shown in the test harness diagram - 
they are all derived from the same class TXChannel. That 
simplifies the development of the test harness and it also 
resembles an actual CR radio where the waveforms change 
as needed but sources and sinks of samples as well as the 
control inputs remain the same. 
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Figure 11.  Decomposition of BPSK31TXChannel. 

All waveforms have been implemented as discreet software 
components ready to be instantiated. We also created 
composite component descriptions for each of them. The 
decomposition of BPSK31TXChannel is shown in Figure 
11. BPSK31TXChannel and QPSK31TXChannel both use 
PSK31CharEncoder which is also implemented as a discreet 
software component and it also has a component 
composition (Figure 9). PSK31TxStateMachine is 
implemented as a discreet software component but it also 
has a description of its state machine. With only some 
components decomposed to simpler ones in the proof-of-
concept system we were able to test the following scenarios 
for BPSK31TXChannel waveform alone: 
• the whole waveform available as a discreet software 

component. 
• the waveform component is not available; its 

description is transferred and the composite component 
is composed as in Figure 11. 

• not only the waveform is not available, but also 
PSK31CharEncoder is not available as well. In this 
scenario a composite PSK31CharEncoder is nested 
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within the composite component implementing the 
waveform. 

• in this scenario also PSK31TxStateMachine is missing 
so at the end of the reconfiguration we get an auto-
generated state machine embedded inside a composition 
for PSK31CharEncoder  that in turn is embedded in the 
waveform composition. 

Similar scenarios were investigated for QPSK31TXChannel 
and RTTYTXChannel. All of the test scenarios were 
successfully executed and we were able to observe proper 
encoding of the textual data for all three waveforms (using 
the fldigi program).   

12. CONCLUSIONS 
We proposed a method for waveform reconfiguration based 
on the transfer of facts and rules expressed in OWL and 
BaseVISor rule language. The method relies on the 
existence of a standardized base SDR ontology to ensure 
interoperability between nodes. The method assumes that all 
concepts not in base ontology can be decomposed into 
concepts that are defined there. When a reconfiguration 
request is received by a node and the node is not familiar 
with the requested software component, it sends a query to 
the node that originated the request in order to obtain the 
description of the unknown component. There are two types 
of descriptions – one that describes a component as a 
composition of other, simpler components and another one 
that describes the component as a state machine, which is 
particularly useful for describing behaviors. Both types of 
components are externally similar i.e. they use the same 
external interface of ports, signals etc. to connect with other 
components. We discussed different ways of instantiating 
components and the process of transferring and integrating 
component descriptions in the local knowledge base. We 
discussed how the power of formal reasoning assures that 
given correct input the resulting composite component or 
state machine is also correct. We described the proof-of-
concept system we built for our experiments and described 
some test scenarios we investigated while experimenting 
with the implementation of transmit sides of three popular 
waveforms used in amateur radio (BPSK31, QPSK31, 
RTTY). The experiments were successful and the proposed 
method has been proven to work for the limited sample of 
waveforms we experimented with. 
 Future work should include issues we did not have the 
opportunity to explore. For example, versioning of the 
software is very important from the compatibility point of 
view. In our method there are a few places that may be 
sensitive to the versioning issues – e.g. the middleware that 
implements the infrastructure of the components (ports, 
signals etc.), the OWL model to a composite component or 
state machine mapping software, etc. All potential problems 
with versioning should be identified and remedial 
procedures for them determined. Additionally, although we 
did some preliminary analysis and we did gather some 
experimental data for some generated composite 

components and state machines of different complexity, the 
bounds of usability of this method for real-life waveforms 
should be established. 
 

13. REFERENCES 
[1] J. Wang, D. Brady, K. Baclawski, M. Kokar, L. Lechowicz, 
The Use of Ontologies for the Self-Awareness of the 
Communication Nodes. In Proceedings of the Software Defined 
Radio Technical Conference SDR’03, 2003. 
[2] J. Wang, M. Kokar, K. Baclawski, and D. Brady, Achieving 
self-awareness of SDR nodes through ontology-based reasoning 
and reflection., in SDR Technical Conference, Proceedings of the 
Software De_ned Radio Technical Conference, 2004. 
[3] J. Moskal, Interfacing a Reasoner with Heterogeneous Self-
Controlling Software., PhD Dissertation, Northeastern University, 
April 2011. 
[4]  L. Lechowicz, M. Kokar. Achieving Dynamic Interoperability 
of Communication: Transfer of Ontology and Rules Between 
Nodes. In Proceedings of the Software Defined Radio Technical 
Conference SDR’06, 2006. 
[5] L. Lechowicz, M. Kokar. Composition, Equivalence and 
Interoperability: An Example. In Proceedings of the Software 
Defined Radio Technical Conference SDR’07, 2007. 
[6] Wireless Innovation Forum, Description of the Cognitive Radio 
Ontology. Working Document WINNF-10-S-0007, August 29, 
2010. 
[7] OWL 2 Web Ontology Language. Document Overview. W3C 
Recommendation 27 October 2009. 
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/ 
[8] C. Matheus, K. Baclawski, M. Kokar, BaseVISor: A Triples-
Based Inference Engine Outfitted to Process RuleML and R-
Entailment Rule. In Proceedings of the 2nd International 
Conference on Rules and Rule Languages for the Semantic Web, 
Athens, GA, Nov. 2006 
[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns. 
Elements of Reusable Object-Oriented Software. Addison-Wesley, 
1995. 
[10] OMG Unified Modeling Language (OMG UML), 
Superstructure, Version 2.4.1, Object Management Group, 2011 
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/  
[11] Fldigi (Fast Light Digital Modem Application) 
http://www.w1hkj.com/Fldigi.html 
 
 

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum   All Rights Reserved

61


