
Waveform Reconstruction from Ontological Description

Leszek Lechowicz (Northeastern University, Boston, MA; llechowi@ece.neu.edu)
Mieczyslaw M. Kokar (Northeastern University, Boston, MA; m.kokar@neu.edu)

ABSTRACT

We present the details of a method for ontology-based waveform
reconfigurability. In this method cognitive radios share the same
base SDR ontology, which allows the radios to understand the
concepts in a uniform way thus enabling transfer of more complex
concepts from one node to another. In the process of
reconfiguration, nodes can receive descriptions of waveforms
expressed in Web Ontology Language (OWL) and Rules and then
automatically configure their processing according to the
specification. Such specifications would contain both structural
descriptions of software components and finite state machines
(FSM) necessary to compose the waveform from simpler software
modules. The waveform configuration process encompasses
generating state machines, building a model of the waveform by
generating OWL individuals and relationships between them using
the inference engine and the specified rules. The constructed model
is then used to instantiate state machines and other software
components and to connect them in the prescribed way. The result
of the overall process is such that a cognitive radio is able to learn
and construct a waveform it did not know before.

A proof-of-concept system has been built confirming the
feasibility of the proposed method. In the process of this system’s
evaluation three different waveforms (BPSK31, QPSK31 and
RTTY) have been described in OWL and Rules, the descriptions
were successfully transferred from one node to another and then
used by the receiving node to construct fully functional software
modules implementing the waveforms.

1. INTRODUCTION
Most of the SDR architectures offer a set of adjustable

and observable parameters of a waveform (also known as
knobs and meters). These parameters can be used to
implement the Set and Get operations, which allow making
changes in the waveform parameters to improve the
communications. The Set and Get approach to
reconfigurability has been investigated by Wang et al. [1,2]
in their Ontology-Based Radio (OBR) architecture. It was
further refined by Moskal in his Cognitive Radio
Framework (CRF) [3].

In the previous work ([4,5]), an interoperability
scenario was proposed in which not only could Cognitive
Radios (CRs) change the parameters of the waveform (i.e.
perform Set/Get operations) but could also negotiate their
Reconfiguration i.e. the use of a different waveform. In the
current scenario when a CR receives a request for a specific
software component it does not know, it can query the
sender for a description of that component as a composition
of simpler components. If any of the simpler components
are also not known to the node, the querying can iteratively
continue until at some level of decomposition the receiving
node knows all the components. The method assumes the
existence of a base SDR ontology shared by all CR nodes. It
also assumes that all components not in the base ontology

can be decomposed into simpler ones and that the
decomposition process can be repeated at each level, until
the components are represented by components from the
base ontology. These two fundamental assumptions
guarantee that two CR nodes will understand each other.

The method for waveform reconfiguration presented in
this paper is based on the interoperability scenario
introduced in [4,5] and relies on the idea that the knowledge
can be transferred from one CR to another and used to
construct software components the CR node did not
previously know. Just like in [4,5], the CRs share the base
SDR ontology and can transfer descriptions of software
components as compositions of simpler components
expressed in Web Ontology Language (OWL) and rules.
The scenario in [4,5] did not, however, provide a way to
specify a behavior. The waveform reconfigurability method
described here includes the ability to transfer descriptions of
behaviors in the form of finite state machine (FSMs)
models. Such descriptions – also expressed in OWL and
rules – are used by the receiving node to generate a
component that can be added to other components to
provide the behavior for the composition.

2. OVERVIEW OF THE RECONFIGURATION
METHOD

The waveform reconfigurability method depends on the
following four elements: an SDR ontology representing
components and their properties, a formal language in which
waveform descriptions are expressed, an inference engine
that provides formal reasoning capability and the application
of FSM models for automatic generation of behaviors.

C ognitive R adio 1 C ognitive R adio 2

S oftware Defined
R adio F unctionality

S oftware Defined
R adio F unctionality

C ommunications C hannel

Data L ink

C ontrol L ink

Data MessagesData Messages

C ognitive Agent C ognitive Agent

C ontrol Messages C ontrol Messages

Local
K nowledge DB S DR Ontology

Local
K nowledge DB

Base S DR Ontology

S DR Ontology

Figure 1. Ontology-Based reconfigurable Cognitive Radios.

The general system architecture of a reconfigurable CR is
shown in Figure 1. The SDR part of the radio’s software
provides the communications services to the user. The bulk

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

54

of data sent across the communications channel consists of
data messages from higher layers of protocol (data link). In
addition to that, CRs exchange signaling messages (control
link).
The process of reconfiguration involves the following steps:
1. A CR node sends a Reconfigure request to another node
2. If the other node knows the requested waveform it

executes the request and switches to that waveform. If it
doesn’t know the waveform it responds with a request
for its description.

3. A node that initiated the request for reconfiguration
sends the description of the waveform, which is
represented in OWL/Rules and may contain either a
description of the component structure or a
specification of the state machine.

4. The receiving node verifies whether it knows all the
components in the description. If not, it sends a request
for description for all components it doesn’t know. This
process is repeated until all unknown components are
decomposed to simpler components the node knows.

5. A model of the composite component is built out of
OWL individuals.

6. Based on the model, appropriate software components
are instantiated from the local component library. State
machines are generated from their descriptions.

7. The waveform component is assembled by connecting
the components as described in the OWL model.

8. The newly constructed waveform is put into service.

3. PREREQUISITES
Some conditions have to be satisfied in order for the
waveform reconfiguration method to work:
• CRs have to be able to communicate with each other.
• CRs have to share the same base SDR ontology. All

other concepts in their SDR ontologies have to be
decomposable into the concepts in the base ontology.

• CRs have to be able to send and respond to queries
about any arbitrary element not in the base ontology

• CRs have to be able to incorporate the new facts they
learned from other nodes into their local knowledge
bases

• CRs have to be able to reason about the facts in their
knowledge base, the facts they learned through queries
and their internal status. They have to be able to use
these facts to reconfigure themselves as necessary

4. ONTOLOGY AND CHOICE OF THE
LANGUAGE.

The base SDR ontology is a standardized set of SDR-related
concepts and their relationships. At the moment of this
writing there is a Cognitive Radio Ontology (CRO)
developed by the Wireless Innovation Forum [6], which has
been selected as a starting point for the proof-of-concept
system developed in this research.
The base ontology is the nucleus of all instances of SDR
ontology. A particular instance in addition to base ontology

may contain some additional local or vendor specific
concepts – all of them have to be decomposable to concepts
from the base ontology to ensure interoperability.
SDR ontology together with the node specific knowledge
(e.g. node’s configuration, waveform parameters,
communication channel’s QoS parameters etc.) constitute
that node’s knowledge base.

Node specific knowledge (e,g, parameters , configuration)

S DR ontology.

May include:
* vendor extens ions
* local concepts

Base S DR ontology

Figure 2. Cognitive Radio's knowledge base.

 Although many languages have been developed to
represent ontologies, in recent years the family languages
based on RDF and RDFS gained prominence due to its
involvement with the Semantic Web applications. Web
Ontology Language (OWL) is the latest member of the
family and it has been adopted as the official ontology
language for the Semantic Web [7]. We selected OWL for
the ontology development primarily due to the availability
of development tools and inference engines supporting it.
 As it was discussed in [4,5], OWL alone is not
expressive enough to describe relationships in composite
components and state machines. It has to be augmented with
a rule language. Our choice is the rule language of
BaseVISor – a forward-chaining inference engine developed
by VIStology, Inc [8]. BaseVISor is based on the Rete
network optimized for the processing of RDF triples, and it
incorporates axioms and consistency checks for R-
entailment, which supports all of the RDF/RDFS and a part
of OWL-DL semantics.

5. COMPONENTS
Waveform reconfigurability has been developed around the
idea of building complex software components out of
simpler ones. The selection of particular software
component architecture is not critical provided that all
elements required by the proposed method can be
implemented in it. In the proof-of-concept built during our
investigation we implemented a lightweight framework
based on the well known Observer design pattern [9], but
other frameworks (e.g. CORBA) could have been used as
well.
 In the ontology all components are descendants of the
class Component. The class Component has three
subclasses: BasicComponent, CompositeComponent and
StateMachineComponent, representing components from the
base ontology, components not in the base ontology that are
not state machines and state machine components
respectively.

It should be emphasized that although the concept of
Software Defined Radio has been developed around the idea

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

55

of replacing majority of the radio’s hardware with the
software routines, nothing in the waveform reconfiguration
method restricts the components only to ones implemented
in software. Specific method’s implementations may allow
mixed hardware/firmware and software configurations and
it is the responsibility of those implementations’ middleware
to provide means for instantiation and composition with
mixed types of components.
 Components interact with other components through
ports and signals and can be driven by an external clock (or
clocks) (Figure 3).

hasName : s tring

C omponent

hasName : s tring

Port OutputPortInputPort

hasName : s tring

C ontrolS ignalIncomingS ignal OutgoingS ignal

has InputP ort

is InputP ortOf

0..*

1

E xternalC loc k

has IncomingS ignal
0..*

1

is IncomingS ignalOf

isOutgoingS ignalOf
1

0..*hasOutgoingS ignal

hasOutputP ort 0..*

1 isOutputP ortOf

hasE xtC lock 0..*

isE xtC lockOf

1

Figure 3. External connections of a Component.

Ports are interfaces through which data flows from one
component to another. A port is characterized by two
features – its direction and the data type it carries. Two ports
are connected if they are related through the isConnectedTo
relationship. An output port can drive more then one input
ports. Any restrictions on how many input ports can be
driven by a single output have to be imposed by local rules,
the reconfigurability method itself does not set any limits.
 Signals are binary messages sent from one component
to another to notify about asynchronous events. Signals are
fundamentally different from ports. Ports handle major
flows of data so the throughput is the primary consideration.
Signals on the other hand have to be able to handle large
number of receivers. For example a reset signal in a very
complex component might need to be received by all
subcomponents (potentially a large number). This
characteristic of signals might have significant impact on
how they are practically implemented (particularly in
hardware or firmware).
 An external clock is a source of periodical events that
are used to pace the flow of data through synchronous
components. Components may require more than one
external clock (not common) or may not require any clock
signals at all – in this case the inputs are processed when
they are asserted on the input ports.
 Two sets of parameters may be associated with a
component: instantiation parameters and run-time
parameters.

The instantiation parameters are used during the
construction of an instance of the component. In case of

components implemented in an object oriented language the
instantiation parameters might simply be passed to the
constructor routine as input parameters.

Certain components might also have observable and/or
adjustable run-time parameters (knobs and meters), which
can be read and/or adjusted through Get and Set operations.
A run-time parameter can be adjustable or can be read-only.
Each of these parameters has a tag (a name) that is used to
identify it during Get/Set operations

6. COMPONENT INSTANTIATION
Components can be implemented not only in software

but also in firmware or hardware. A system can support
more than one kind of component instantiation - for
example it can provide a number of hardware resources
implementing the functionality and additionally a software
version of the same component in case the number of
provided hardware resources is not sufficient.

A descendant of CompositeComponent type may be
instantiated either as a single discreet component (if
available) or as a composition of simpler components.
Similarly a descendant of StateMachineComponent type
may be instantiated as a discreet component but if such a
component is not available the associated description of the
state machine is used to generate an executable component
instance.

The different types of instantiation are managed by a
set of classes derived from the class Instantiation. In the
proof-of-concept system, three instantiation classes have
been defined in the ontology:
• JavaClassInstance – for instantiations from Java

classes. An individual of this class contains the name of
the JAR file and the name of the java class that
implements the component.

• ComponentComposition – for instantiations that create
instances of components as composition of simpler
components.

• StateMachineCodeGen – for state machine components
which are created through on-the-fly generation of
executable state machines form their ontological
descriptions.

The instantiation knowledge is node specific; it is not a part
of the standardized ontology. The selection of an
appropriate instantiation class for a particular component is
made by the inference engine. A set of rules governing the
selection is specific to the CR node and is defined in its
local knowledge base. The reasoner associates a specific
instantiation class with each component class based on the
rules and data available in the knowledge base. Later on,
when an OWL individual representing an instance of a
component is asserted to be rdf:type of that component
class, the rules assert that this individual is also rdf:type of
the instantiation class associated with that component type
and that in turn fires another rule that is specific for that
component type and instantiation type, which asserts for this
individual the facts required for the creation of the instance.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

56

7. STATE MACHINES
State machines are frequently used in the definition and
implementation of communication protocols. Traditionally
state machines are hardcoded and are the integral part of the
overall protocol implementation thus they cannot easily be
changed or extended if new functionality is to be added.
Reconfigurable systems that are to be able to learn new,
unfamiliar protocols have to be able to support the creation
and instantiation of state machines from their descriptions.

Figure 4. WIF’s prototype of STD ontology [6].

 Wireless Innovation Forum (WINNF) proposed that
state transition diagrams (STDs) be used to describe finite
state machine [6]. We used their prototype of STD ontology
as a starting point for defining the state machine description
ontology. Certain concepts in the ontology we developed
have been inspired by similar constructs in the UML
StateMachine package [10], but it should be understood that
this ontology is not a mapping of the UML standard.
 State machine components are externally similar to any
other components. They communicate with other
components through ports and signals and can be driven by
an external clock.

In order to better illustrate the state machine description
ontology, consider the following example of a simple state
transition diagram of a decimator by factor 4 (Figure 5).

C OUNT_2

entry/S etOutput(out_port, in_port)
exit/count=0

S E ND

C LK [count >= 2] C LK

S TAR T

S TOP

S TOP
C LK [count < 2] / count++

S TAR TE D

S TOP

C LK

IDLE

Figure 5. An state transition diagram of a decimator by 4.

The external view of the decimator is shown in Figure 6.

sample_in sample_out

clk

S
TA

R
T

S
TO

P

Figure 6. External inputs and output of the decimator
component.

The decimator component is activated when it receives
START signal. The reception of STOP deactivates it by
making it to transition back to the IDLE state. When active,
the decimator stays in the loop between the SEND and the
COUNT_2 state. It sends to the output a sample read from
the input port every time it enters state SEND, which
happens every fourth clock event (CLK).

The following entities are involved in the definition of a
state machine:
• States
• Transitions between states
• Clocks
• Input and output ports
• Incoming and outgoing signals
• Definitions of events, which can be generated on:

o a reception of a signal
o a change of value on an input port
o a reception of a clock signal

• Properties that store auxiliary data necessary for the
state machine to work. They are equivalent to local
variables in programming languages.

• Parameters which are equivalent run-time parameters
of regular components and which support Get and Set
operations.

States are fundamental elements of the state machine
and are represented by individuals of type fsm.State. A state
may define OnEnter and OnExit action sequences which are
executed when the state machine transitions into and out of
the state respectively. A definition of the state also
references the individuals representing the transitions that
originate in that state.

<obr:fsm.hasState variable="_Ind.STARTED">
 <rdf:type resource="owl:NamedIndividual"/>
 <rdf:type resource="obr:fsm.State"/>
 <obr:hasName datatype="xsd:string">STARTED
 </obr:hasName>
 <obr:fsm.hasTransition variable=
 "_Ind.STARTED.Transition.0">
 <rdf:type resource="owl:NamedIndividual"/>
 <rdf:type resource="obr:fsm.Transition"/>
 <obr:fsm.triggeredBy variable="_Ind.Event.CLK"/>
 <obr:fsm.hasTarget variable="_Ind.SEND"/>
 </obr:fsm.hasTransition>
 <obr:fsm.hasTransition
 variable="_Ind.STARTED.Transition.1">
 <rdf:type resource="owl:NamedIndividual"/>
 <rdf:type resource="obr:fsm.Transition"/>
 <obr:fsm.triggeredBy variable="_Ind.Event.STOP"/>
 <obr:fsm.hasTarget variable="_Ind.IDLE"/>
 </obr:fsm.hasTransition>
</obr:fsm.hasState>

Figure 7. Definition of the state STARTED in the example
decimator state machine.

Transitions are represented by individuals of the class
fsm.Transition. A description of transition includes the
target state and the event that triggers it. A transition may be
guarded by a constraint (fsm.Constraint), which is an
expression that evaluates to a logical true/false value. In
addition to a guard the transition may also define a sequence
of actions to be taken when the transition is executed. The
transition actions are executed after the OnExit action

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

57

sequence of the originating state and before the OnEnter
sequence of the target state.

An expression (fsm.Expression) is an arbitrary
statement that evaluates to a single value. In addition to their
use as guards expressions are used as parameters to actions
and API functions. The other types of expressions include
API function calls, arithmetical operations, bit operations,
values read from input ports and constant values.
 Events trigger transitions between states. Three
subclasses of fsm.Event correspond to three sources of
events – clocks, signals and changes of input port values.
 An action (fsm.Action) represents an executable
statement. A collection of actions executed together is an
activity. The simplest form of an activity is an action
sequence which simply is an ordered list of individual
actions. The type of actions supported in the state machine
definitions include emitting a signal, setting output port to a
value of an expression, setting a property (local variable) to
a value of an expression. In addition to these there are two
actions used for flow control (IF and WHILE statements)
and there’s also an action returning a value that is used in
the definition of the Get operation handler for a parameter.
 Properties are similar to local variables in the
programming languages and may be used as data buffers,
counters, flags etc.
 Parameters may be used to access and possibly adjust
the internal data values in the state machine. The definition
of the parameter includes an action sequence for Get
operation. It might also include an action sequence for Set
operation if the parameter can be adjusted. If the Set action
sequence is defined, the parameter definition may also
include a validation constraint.

8. RULES IN COMPONENT DESCRIPTIONS
A complete description of a component consists of two
parts:
• An external description that lists all the ports, signals,

clock inputs and instantiation parameters. This
description contains enough information to be able to
instantiate the component and connect to the others but
it does not say how such component can be composed.
For BasicComponents (i.e. components in the base
ontology that are not decomposable any further) this is
the only description that is required.

• An internal description that augments the external
description with the details how to build such
component. The internal description is a part of the
component’s instantiation definition – and it contains
either the description of the component composition
(for components derived from CompositeComponent)
or the description of the state machine (in case of
descendants of StateMachineComponent).

An internal description of a CompositeComponent
establishes relationships among OWL individuals
representing different types of objects – components, ports,
signals etc. involved in the composition. The easiest way to

reference these individuals would be to use their URIs
(Uniform Resource Identifiers). Unfortunately, when the
component description is created, the concrete URIs of the
individuals are not known. Indeed, they cannot be known,
otherwise no OWL model could contain more than one
composition of particular type. Still for the purpose of the
composite component description one needs to be able to
reference a particular individual without knowing its URI.

Consider a composite component consisting of a
cascade of two multiply-accumulate (MAC) components as
shown in Figure 8. If the MAC component is not available
in the CR, the CR can request and receive its description as
a composition of an adder and a multiplier. Since in OWL
all unique individuals have to have different URIs, the URI
of the multiplier in the composition substituting for MAC1
has to be different from the URI of the multiplier in the
composition MAC2. Similarly, the URIs of the adders and
the ports all have to be different. That clearly creates a
problem when one tries to describe connections between the
ports of the components within a composition.

x + x +

MAC 1 MAC 2

MAC 2.m1

MAC 2.m2 MAC 2.a

MAC 2.out
MAC 1.out

MAC 1.aMAC 1.m2

MAC 1.m1

MAC 1.m2 MAC 1.a MAC 2.m2 MAC 2.a

MAC 1.m1 MAC 2.out‘in1’

‘in2’

‘out’

‘in1’

‘in2’ ‘in2’‘in2’

‘in1’ ‘in1’

‘out’ ‘out’‘out’

‘MUL ’ ‘ADD’ ‘ADD’‘MUL ’

Figure 8. Individuals in component compositions.

We dealt with this problem by associating tags (labels)
with all individuals in the description. The tags have to be
unique at a given level of scope – e.g. all subcomponents
have to have unique labels, all ports of the specific
component have to be unique, etc. The labels are used to
differentiate between individuals. Describing relationships
in this approach however is no longer as simple as asserting
a property between two individuals with known URIs. The
descriptions of the relationships must necessarily be written
as rules in which the labels are used to select the appropriate
individuals and only then the relationship is asserted.
Pseudo code of a rule describing a connection between the
output of the multiplier and an input of the adder in MAC
might look like the following:

If the specified individual is of type MAC and if:
• it has a subcomponent with a tag ‘MUL’ and
• this subcomponent has an output port with a tag ‘o’

(assign the port’s resource to the rule variable
‘_outPort’)

• also if it has a subcomponent with a tag ‘ADD’ and

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

58

• this subcomponent has an input port with a tag ‘a1’
(assign the port’s resource to ‘_inPort’)

then assert:
• ‘_outPort’ drives ‘_inPort’

Similarly composed rules are used to describe other
relationships in the component (e.g. signal connections,
clock connections etc.).

9. COMPOSITE COMPONENTS
In order to fully define a composite component more data is
required in addition to subcomponents and connections.
 Consider the PSK31CharEncoder component used in
the experiments in the proof-of-concept system (Figure 9).

The external ports and signals of PSK31CharEncoder
are defined in its external description (see section 8). The
internal description contains the definitions of
subcomponents, connections between them and the
connections between external ports and signals of the ports
and signals of subcomponents. The tags of the external ports
and signals can be different than the tags of ports/signals
they are internally connected to.

next_char

char_in

char_rdy

P S K31Varicode‐
E ncoder P S K31S hiftR egis ter

P S K31TX S tateMachine

char_next

char_in

char_put

code_rdy

code_out

code_len

code_get

code_rdy

code_in

code_len

code_next

bit_out bit_out

empty

empty

TxS tart TxS top

TxS top

TxS tart

C lkE nable C lkDisable

C lkE nable C lkDisable

shift

shift

P S K 31C harE ncoder

varicode shiftR eg

txS M

Figure 9. The internal structure of PSK31CharEncoder.

Two additional elements of the composite component
description are not shown in Figure 9. One of them is the
mapping of the external clock inputs of the composite
component to clock inputs of the internal components. In
this particular example the mapping is trivial as all internal
components have only one clock input each and they all
map into the singular clock input of the composite
component.

The second type of information not shown in the above
diagram is the mapping of run-time parameters of the
composite component into run-time parameters of internal
components. In the proof-of-concept system we use simple
pass-through type of mapping but in a real system that
might not be sufficient. A solution similar to the one used
for state machine run-time parameters might also be
implemented for composite components.

10. COMPONENT DESCRIPTION TRANSFER
The process of reconfiguration starts when one of the CRs
sends a request to another node to use a particular waveform

(i.e. to instantiate and put online an instance of the specific
software component implementing such waveform). If the
receiving node knows that component then if other
conditions are met the node can create the instance of the
component and start using it. If the node is unfamiliar with
the requested component it sends a query to the other node
requesting relevant information about the component.
 What exactly triggers the query is the assertion that an
individual is of the specific rdf:type that is not present in the
local knowledge base or that an individual is of type that is
defined in the knowledge base but it does not have any
instantiation class associated with it. Both situations are
caught automatically in the BaseVISor rules and special
procedural attachments designed to handle them are called.
 After the descriptions of the component are transferred
from the other node, the new facts are asserted in the
knowledge database and the new rules are added to the local
rule set. Then the inference engine is called again and this
time around when it gets to the point where it processes the
original assertion that triggered the component query, the
knowledge base does have both the external and internal
description of the component. When the individual is
asserted to be of that specific type, the description rules kick
in and automatically generate OWL individuals for all
internal and external elements of the composite component.
The presence of these individuals triggers in turn all other
rules that define connections and other relationships among
them effectively defining the whole composite component.
 The process of building a state machine from its
ontological description is very similar. The OWL model of
the state machine is also built automatically through
asserted facts and rules. The waveform reconfiguration
method does not impose any specific way for the translation
of the OWL model of the state machine into a component.
In the proof-of-concept system we implemented a two-stage
process for that. In the first stage the OWL constructs are
translated into related Java constructs buffered in memory.
In the second stage the buffered Java source code is
compiled in memory into a binary class that is used to create
an instance of the state machine component.
 The process of constructing an OWL model of a
composite component or a state machine is completely
automatic. It utilizes the power of formal reasoning in the
forward-chaining inference engine. As long as the
description rules and facts are correct, the resulting model is
correct too. Since the actual working instance of the
composite component or state machine is a simple one-to-
one mapping of OWL individuals and relationships into
components and connections (or java constructs in case of
the state machine descriptions), the opportunities to make
any errors due to ambiguities in interpretation are virtually
eliminated and barring any errors in the mapping process
itself, the building of the component from its description is
provably correct.
 Once the description of a component is transferred and
integrated in the local knowledge base, it is automatically

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

59

applied to all other instances of that component type. The
CR effectively learned the facts about the previously
unknown component and is able to apply the acquired
knowledge as needed.

11. PROOF-OF-CONCEPT SYSTEM
During our investigations we built a proof-of-concept
system. The system has been implemented in Java and
consists of two processes communicating with each other
over the network. One of the processes functions as a master
node that initiates the reconfiguration request and responds
to queries for component descriptions. The other one acts as
a slave node and it receives reconfiguration requests, sends
component queries to the master as needed and then
integrates in the local knowledge base the received
component description. The slave node implements the
middleware responsible for generating state machines and
assembling composite components from their ontological
descriptions.

Both nodes use BaseVISor as their inference engines.
The integration of BaseVISor with the rest of the cognitive
agent is done through BaseVISor’s java API and through
procedural attachments. The java API is used primarily to
interact with the fact database i.e. to assert facts and to make
queries. The API is also called when the inference process
needs to be (re)triggered. Procedural attachments are used to
define new constructs in the BaseVISor rule language and in
the experimental system they are used for two purposes – to
generate new resources when the rules are building an OWL
model (of a composite component or a state machine) and to
initiate the component query to the master node when the
rule detects that an unknown type of an individual has been
asserted.

We selected transmit sides of three digital waveforms
very popular in the amateur radio service as the subjects of
our experiments. These are BPSK31, QPSK31 and RTTY.
The reason for this selection is that all of them are of non-
trivial complexity but at the same time they don’t require
great computational resources and their complexity is not so
big as to impede the ability to diagnose problems that were
bound to appear in the process of building the experimental
system. All these waveforms are narrowband so they can be
generated and monitored by a computer with a soundcard.

For the purpose of testing the selected waveforms a test
harness has been built in the slave process (Figure 10).

GUI

S TAR T

TXC hannel

S TOP

C lock

AudioS ink

Text Input

TxS tart

TxS top

chan_in

chan_put

buffer_full

C lkE nable

C lkDisable

S TAR T

S TOP

sample_out input

clk

buffer_not_empty

Figure 10. Waveform test harness.

The test harness consists of a simple GUI panel that allows
to generate the events TxStart and TxStop that start and stop
the waveform under test (TXChannel). A text input panel in
the GUI allows entering of textual messages that are passed
onto the waveform as the payload data. The waveform
generates ClkEnable and ClkDisable signals that control the
software clock. The output of the waveform is connected to
the input of the AudioSink component that drives the
computer’s soundcard. The audio output from the soundcard
is monitored by a freeware application fldigi [11] that is able
to receive and decode all three waveforms.
We implemented all waveforms with the same set of
external connections as shown in the test harness diagram -
they are all derived from the same class TXChannel. That
simplifies the development of the test harness and it also
resembles an actual CR radio where the waveforms change
as needed but sources and sinks of samples as well as the
control inputs remain the same.

C haracterF IFO P S K31C harE ncoder BP S K31B itE ncoder

P S K31TXPhase‐
S hiftS M

PS K31WaveS haper

P S K31WaveS haper

S ineC os ineGenerator

Multiplier

Multiplier

Adder

C
lk
E
na

bl
e

char_put

char_in

buffer_full

C
lk
D
is
ab

le

Tx
S
ta
rt

Tx
S
to
p

char_get

char_out

char_rdy
char_rdy

char_in

next_char
bit_out

in out

symbol_in

output

output

in1

in1

in2

in2

out

out

out

in1

in2

s in_out

cos_out

sample_out_I

sample_out_Q

selector_out_I

selector_out_Q
input

input

selector

selector

buffer_not
_empty

Figure 11. Decomposition of BPSK31TXChannel.

All waveforms have been implemented as discreet software
components ready to be instantiated. We also created
composite component descriptions for each of them. The
decomposition of BPSK31TXChannel is shown in Figure
11. BPSK31TXChannel and QPSK31TXChannel both use
PSK31CharEncoder which is also implemented as a discreet
software component and it also has a component
composition (Figure 9). PSK31TxStateMachine is
implemented as a discreet software component but it also
has a description of its state machine. With only some
components decomposed to simpler ones in the proof-of-
concept system we were able to test the following scenarios
for BPSK31TXChannel waveform alone:
• the whole waveform available as a discreet software

component.
• the waveform component is not available; its

description is transferred and the composite component
is composed as in Figure 11.

• not only the waveform is not available, but also
PSK31CharEncoder is not available as well. In this
scenario a composite PSK31CharEncoder is nested

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

60

within the composite component implementing the
waveform.

• in this scenario also PSK31TxStateMachine is missing
so at the end of the reconfiguration we get an auto-
generated state machine embedded inside a composition
for PSK31CharEncoder that in turn is embedded in the
waveform composition.

Similar scenarios were investigated for QPSK31TXChannel
and RTTYTXChannel. All of the test scenarios were
successfully executed and we were able to observe proper
encoding of the textual data for all three waveforms (using
the fldigi program).

12. CONCLUSIONS
We proposed a method for waveform reconfiguration based
on the transfer of facts and rules expressed in OWL and
BaseVISor rule language. The method relies on the
existence of a standardized base SDR ontology to ensure
interoperability between nodes. The method assumes that all
concepts not in base ontology can be decomposed into
concepts that are defined there. When a reconfiguration
request is received by a node and the node is not familiar
with the requested software component, it sends a query to
the node that originated the request in order to obtain the
description of the unknown component. There are two types
of descriptions – one that describes a component as a
composition of other, simpler components and another one
that describes the component as a state machine, which is
particularly useful for describing behaviors. Both types of
components are externally similar i.e. they use the same
external interface of ports, signals etc. to connect with other
components. We discussed different ways of instantiating
components and the process of transferring and integrating
component descriptions in the local knowledge base. We
discussed how the power of formal reasoning assures that
given correct input the resulting composite component or
state machine is also correct. We described the proof-of-
concept system we built for our experiments and described
some test scenarios we investigated while experimenting
with the implementation of transmit sides of three popular
waveforms used in amateur radio (BPSK31, QPSK31,
RTTY). The experiments were successful and the proposed
method has been proven to work for the limited sample of
waveforms we experimented with.
 Future work should include issues we did not have the
opportunity to explore. For example, versioning of the
software is very important from the compatibility point of
view. In our method there are a few places that may be
sensitive to the versioning issues – e.g. the middleware that
implements the infrastructure of the components (ports,
signals etc.), the OWL model to a composite component or
state machine mapping software, etc. All potential problems
with versioning should be identified and remedial
procedures for them determined. Additionally, although we
did some preliminary analysis and we did gather some
experimental data for some generated composite

components and state machines of different complexity, the
bounds of usability of this method for real-life waveforms
should be established.

13. REFERENCES
[1] J. Wang, D. Brady, K. Baclawski, M. Kokar, L. Lechowicz,
The Use of Ontologies for the Self-Awareness of the
Communication Nodes. In Proceedings of the Software Defined
Radio Technical Conference SDR’03, 2003.
[2] J. Wang, M. Kokar, K. Baclawski, and D. Brady, Achieving
self-awareness of SDR nodes through ontology-based reasoning
and reflection., in SDR Technical Conference, Proceedings of the
Software De_ned Radio Technical Conference, 2004.
[3] J. Moskal, Interfacing a Reasoner with Heterogeneous Self-
Controlling Software., PhD Dissertation, Northeastern University,
April 2011.
[4] L. Lechowicz, M. Kokar. Achieving Dynamic Interoperability
of Communication: Transfer of Ontology and Rules Between
Nodes. In Proceedings of the Software Defined Radio Technical
Conference SDR’06, 2006.
[5] L. Lechowicz, M. Kokar. Composition, Equivalence and
Interoperability: An Example. In Proceedings of the Software
Defined Radio Technical Conference SDR’07, 2007.
[6] Wireless Innovation Forum, Description of the Cognitive Radio
Ontology. Working Document WINNF-10-S-0007, August 29,
2010.
[7] OWL 2 Web Ontology Language. Document Overview. W3C
Recommendation 27 October 2009.
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
[8] C. Matheus, K. Baclawski, M. Kokar, BaseVISor: A Triples-
Based Inference Engine Outfitted to Process RuleML and R-
Entailment Rule. In Proceedings of the 2nd International
Conference on Rules and Rule Languages for the Semantic Web,
Athens, GA, Nov. 2006
[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.
[10] OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.4.1, Object Management Group, 2011
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
[11] Fldigi (Fast Light Digital Modem Application)
http://www.w1hkj.com/Fldigi.html

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

61

